
An Acceleration of a Graph Cut

Segmentation With FPGA

Daichi Kobori and Tsutomu Maruyama

University of Tsukuba

What Is Graph Cut Segmentation?

ÅGraph cut is one of the segmentation methods based on

energy minimization, and graph cut based segmentation

is widely used.

ÅThe following images are examples of segmentation [*].

ÅThe seed pixels (target objects or background) are given

by the user, and then only the target objects are extracted.

Input image with seeds Output image

[*] Tomoyuki Nagahashi, Hironobu Fujiyoshi, and Takeo Kanade, ñImage

Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing,ò in

ACCV 2007, Part II, LNCS 4844, pp. 806--816, 2007.

Background

ÅFor calculating the graph cut, max-flow algorithm is widely

used, but it requires long computation time.

ÅWe need an acceleration by FPGA or GPU for real-time

processing of the max-flow algorithm.

ÅThe performance of a GPU (GeForce GTX280) system [7]

is 25 graph cuts per second on 640 x 480 pixel images,

which is about 5 times faster than CPU.

[7] V. Vineet and P. J. Narayanan, ñCudacuts: Fast graph cuts on the gpu,ò

in CVPR Workshop on Visual Computer Vision on GPUs, 2008.

Segmentation Procedure

ÅSeed pixels (on objects or background) are specified by

the user.

ÅA weighted directed graph among the pixels in the image

is generated based on the seed pixels.

ÅA min-cut of the weighted directed graph is calculated

using max-flow algorithm.

 ὸ

 ί

ÅὋ ὠȟὉ : a weighted directed graph

ὠ is a set of vertices (pixels), and it includes two special

nodes, ί and ὸ.

Ὁ is a set of edges between two vertices, and each edge

has a non-negative capacity ὧόȟὺ.

A Graph

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4 ί ὸ

A Graph

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4 ί ὸ

ÅὋ ὠȟὉ : a weighted directed graph

ὠ is a set of vertices (pixels), and it includes two special

nodes, ί and ὸ.

Ὁ is a set of edges between two vertices, and each edge

has a non-negative capacity ὧόȟὺ.

A Graph

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4 ί ὸ

ÅὋ ὠȟὉ : a weighted directed graph

ὠ is a set of vertices (pixels), and it includes two special

nodes, ί and ὸ.

Ὁ is a set of edges between two vertices, and each edge

has a non-negative capacity ὧόȟὺ.

ÅA cut of the graph shows the division of ὠ into two groups;

Ὓ and Ὕ.

ÅThe capacity of the cut ὧὛȟὝ is defined as the capacity

of the edges from Ὓ to Ὕ.

ÅThe cut which minimizes ὧὛȟὝ is called min-cut.

Cut of a Graph

ὧὛȟὝ ρς ρτ ςφ

Ὓ Ὕ

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4

ÅA cut of the graph shows the division of ὠ into two groups;

Ὓ and Ὕ.

ÅThe capacity of the cut ὧὛȟὝ is defined as the capacity

of the edges from Ὓ to Ὕ.

ÅThe cut which minimizes ὧὛȟὝ is called min-cut.

Cut of a Graph

ὧὛȟὝ ρς ρτ ςφ

Ὓ Ὕ

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4

Cut of a Graph

ÅA cut of the graph shows the division of ὠ into two groups;

Ὓ and Ὕ.

ÅThe capacity of the cut ὧὛȟὝ is defined as the capacity

of the edges from Ὓ to Ὕ.

ÅThe cut which minimizes ὧὛȟὝ is called min-cut.

ὧὛȟὝ ρς χ τ ςσ

Ὓ Ὕ

14

12

 ί ὸ

ὺ

ὺ

ὺ

ὺ

16

13

20

4

7 9 10 4

Making a Graph (Color)

ÅThe weighted directed graph is generated from the pixels

in the image.

image

ÅSuppose that a black pixel is specified as foreground, and

a white pixel is specified as background.

ÅThen, pixels that have similar color to black have strong

connection to ί.

ÅOn the other hand, pixels that have similar color to white

have strong connection to ὸ.

Making a Graph (Seed)

ί ὸ

Specified as foreground

Specified as background

ÅSuppose that a black pixel is specified as foreground, and

a white pixel is specified as background.

ÅThen, pixels that have similar color to black have strong

connection to ί.

ÅOn the other hand, pixels that have similar color to white

have strong connection to ὸ.

Making a Graph (Seed)

ὸ

Specified as foreground

Specified as background

ί

ÅSuppose that a black pixel is specified as foreground, and

a white pixel is specified as background.

ÅThen, pixels that have similar color to black have strong

connection to ί.

ÅOn the other hand, pixels that have similar color to white

have strong connection to ὸ.

Making a Graph (Seed)

Specified as foreground

Specified as background

ὸ ί

Making a Graph (Energy)

ÅMin-cut corresponds to the minimum energy of the

following equation.

Ὁ╛ ‗ Ὑ ὒ

ᶰ

ὄ ȟ ẗὒȟὒ

ȟᶰ

Å‗ is a parameter which controls the affect by the seeds

(the larger the value, the more affect by the seeds).

How to Compute Min-cut

ÅAccording to ñmax-flow min-cut theoremò, min-cut is

obtained from the result of max-flow.

ÅIn order to calculate max-flow, two methods are

commonly used.

1. ñaugmenting path methodò scans the graph to find a path from

source (ί) to sink (ὸ).
This method is NOT suitable for hardware implementation.

2. ñpush-relabel methodò uses only the connection from one vertex

to its neighbors.

This method is suitable for hardware implementation.

Push-relabel Method

ÅIn the push-relabel method, a weighted directed graph is

considered as a flow network.

ÅWe can flow preflow Ὣ in each edge if Ὣ is smaller than

flow capacity ὧόȟὺ.

ÅAll vertices have excess flow

Ὡό Ὣ ό Ὣ ό π.

ÅVertex ό is active if Ὡό π.

Flow network

Ὡὺ ω χ ς

 ί ὸ

ὺ

ὺ

16

13

20

4

7 7 7
9

Ὣ ὺ
Ὣ ὺ

Residual Network

ÅThe residual capacity of an edge is given by

ὧόȟὺ ὧόȟὺ Ὣόȟὺ

which is the rest of the capacity that we can flow from ό to ὺ.

ÅBy flowing 7 from ὺ to ὺ,
ὧὺȟὺ χ χ π

ὧὺȟὺ χ χ ρτ

 ί ὸ

ὺ

ὺ

16

13

20

4

7 7 7
9

 ί ὸ

ὺ

ὺ

7

13

20

4

14
9

Ὡὺ ς

Ὡὺ χ

Ὡὺ ς

Flow network Residual network

Residual Network

ÅUsing the residual network, we can easily understand how

much more we can flow on the network.

ÅHowever, we must store excess flow of each vertex.

 ί ὸ

ὺ

ὺ

16

13

20

4

7 7 7
9

 ί ὸ

ὺ

ὺ

7

13

20

4

14
9

Ὡὺ ς

Ὡὺ χ

Ὡὺ ς

Flow network Residual network

Operations of Push-relabel Method

ÅThere are two main operations, and they are applied to

the active vertices.

1. Push(όȟὺ)

2. Relabel(ό)

ÅIf ό is active, either operation can be applied to ό.

Push(όȟὺ)

ÅApplicable condition

ÅVertex ό is active.

Åὧόȟὺ π

ÅὬό Ὤὺ ρ

ÅOperation

ÅÍÉÎὩόȟὧόȟὺ is flowed from ό to ὺ.

ÅExample

ÅPreflow 5 is flowed from ὺ to ὺ.

ÅResidual capacity ὧὺȟὺ is reduced, and ὧὺȟὺ is increased.

Ὡὺ π
Ὤὺ σ

Ὡὺ υ
Ὤὺ ς

ὺ ὺ
10

4

ὺ ὺ
5

9

Push(ὺȟὺ) Ὡὺ υ
Ὤὺ σ

Ὡὺ π
Ὤὺ ς

Relabel(ό)

ÅApplicable condition

ÅVertex ό is active.

ÅPush(όȟὺ) cannot be applied to vertex ό.

ÅOperation

ÅὬό is heightened so that push(όȟὺ) can be applied.

ÅExample

ÅPush(ὺȟὺ) can not applied to ὺ because Ὤὺ Ὤὺ .

ÅὬὺ is heightened more than Ὤὺ so that push(ὺȟὺ) can be

applied to ὺ.

Ὡὺ υ
Ὤὺ σ

Ὡὺ π
Ὤὺ ς

ὺ ὺ
10

4

ὺ ὺ
10

4

Relabel(ὺ) Ὡὺ υ
Ὤὺ ρ

Ὡὺ π
Ὤὺ ς

Heuristics for the Push-relabel Method

ÅThe computational complexity of the push-relabel method

is ὕὠὉ .

ÅTo reduce the computational complexity, two heuristics

are widely used.

Åñglobal relabelingò changes Ὤό by calculating the

minimum distance from ό to ὸ by the breadth first search.

We need to traverse the graph by dereferencing, so it is

NOT suitable for hardware implementation.

Åñgap relabelingò heightens Ὤό to ὠ ρ if ό belongs to Ὓ.
This method can be implemented using a histogram.

Heuristics for the Push-relabel Method

ÅThe computational complexity of the push-relabel method

is ὕὠὉ .

ÅTo reduce the computational complexity, two heuristics

are widely used.

Åñglobal relabelingò changes Ὤό by calculating the

minimum distance from ό to ὸ by the breadth first search.

We need to traverse the graph by dereferencing, so it is

NOT suitable for hardware implementation.

Åñgap relabelingò heightens Ὤό to ὠ ρ if ό belongs to Ὓ.
This method can be implemented using a histogram.

Heuristics for the Push-relabel Method

ÅThe computational complexity of the push-relabel method

is ὕὠὉ .

ÅTo reduce the computational complexity, two heuristics

are widely used.

Åñglobal relabelingò changes Ὤό by calculating the

minimum distance from ό to ὸ by the breadth first search.

We need to traverse the graph by dereferencing, so it is

NOT suitable for hardware implementation.

Åñgap relabelingò heightens Ὤό to ὠ ρ if ό belongs to Ὓ.
This method can be implemented using a histogram.

Main Features in Our Approach

ÅMajor operations are ñpushò and ñralabelò.

ÅOperations are applied to the active vertices.

ÅRelabel is applied first if necessary, and then push is

applied.

ÅA FIFO is used to manage active vertices, because the

order of the processing is arbitrary.

ÅWe can obtain max-flow of the flow network when there

exists no active vertex.

Hardware Implementation

Data Format of Each Pixel

ÅEach vertex ό has 10 links (eight neighbors, and ί and ὸ).

ÅEach link has residual capacity ὧόȟz from ό.

ÅVertex ό also has residual capacity ὧίȟό

from ί to ό.

ÅExcess flow Ὡό and height Ὤό are required

for each vertex ό.

ÅThe total data width is 126b.
 ὸ

 ί

A Block Diagram of the Circuit

1. The address of an active vertex is popped up from the address

queue.

2. The data of the nine pixels are read out from the cache memory.

3. Relabel operation is applied if necessary, and push operation is

applied in the push-relabel unit.

4. If new active vertex is generated, put it in the address queue.

5. The result is written back to the cache memory.

A Block Diagram of the Circuit

1. The address of an active vertex is popped up from the address

queue.

2. The data of the nine pixels are read out from the cache memory.

3. Relabel operation is applied if necessary, and push operation is

applied in the push-relabel unit.

4. If new active vertex is generated, put it in the address queue.

5. The result is written back to the cache memory.

A Block Diagram of the Circuit

1. The address of an active vertex is popped up from the address

queue.

2. The data of the nine pixels are read out from the cache memory.

3. Relabel operation is applied if necessary, and push operation is

applied in the push-relabel unit.

4. If new active vertex is generated, put it in the address queue.

5. The result is written back to the cache memory.

A Block Diagram of the Circuit

1. The address of an active vertex is popped up from the address

queue.

2. The data of the nine pixels are read out from the cache memory.

3. Relabel operation is applied if necessary, and push operation is

applied in the push-relabel unit.

4. If new active vertex is generated, put it in the address queue.

5. The result is written back to the cache memory.

A Block Diagram of the Circuit

1. The address of an active vertex is popped up from the address

queue.

2. The data of the nine pixels are read out from the cache memory.

3. Relabel operation is applied if necessary, and push operation is

applied in the push-relabel unit.

4. If new active vertex is generated, put it in the address queue.

5. The result is written back to the cache memory.

Data Caching Method

Å192 x 128 pixels are cached on block RAMs.

ÅThe cached area is changed.

ÅAmong the cached pixels, 64 pixels are newly processed.

Data Caching Method

Å192 x 128 pixels are cached on block RAMs.

ÅThe cached area is changed.

ÅAmong the cached pixels, 64 pixels are newly processed.

Data Caching Method

ÅBy applying the push operation to an active pixel, its

neighbor pixels may become active from one to another.

ÅThere are four possibilities that active pixels go out of the

cached area.

ÅIn case of (a), those pixels are pushed in a queue and processed

afterward.

ÅIn case of (b) or (c), a control flag is set, and vertical scan is

rewound.

ÅIn case of (d), those processed in the next vertical scan.

Data Caching Method

ÅBy applying the push operation to an active pixel, its

neighbor pixels may become active from one to another.

ÅThere are four possibilities that active pixels go out of the

cached area.

ÅIn case of (a), those pixels are pushed in a queue and processed

afterward.

ÅIn case of (b) or (c), a control flag is set, and vertical scan is

rewound.

ÅIn case of (d), those processed in the next vertical scan.

Data Caching Method

ÅBy applying the push operation to an active pixel, its

neighbor pixels may become active from one to another.

ÅThere are four possibilities that active pixels go out of the

cached area.

ÅIn case of (a), those pixels are pushed in a queue and processed

afterward.

ÅIn case of (b) or (c), a control flag is set, and vertical scan is

rewound.

ÅIn case of (d), those pixels are processed in the next vertical scan.

Data Mapping Method

Å192 x 128 pixels in the target area are mapped onto

12 banks (arranged 3 x 4) to allow parallel accesses to them.

Å12 pixels around any coordinate can be read out in parallel.

Å 9 of the 12 pixels are selected by the selectors, and given to

the push-relabel unit.

Updating the Cached Area

ÅThe data of the next 192 pixels are read into a set of

buffers which consist of distributed RAMs, while the pixels

are being processing.

ÅWhen the number of active pixels becomes less than the

given threshold, the push-relabel unit is stopped.

ÅThe data of 3 of the 12 banks are updated in parallel.

ÅOld data are written back to the off-chip memory, while the

pixels are being processing.

Off-chip

memory

Buffer 1

Buffer 2

192

Updating the Cached Area

ÅThe data of the next 192 pixels are read into a set of

buffers which consist of distributed RAMs, while the pixels

are being processing.

ÅWhen the number of active pixels becomes less than the

given threshold, the push-relabel unit is stopped.

ÅThe data of 3 of the 12 banks are updated in parallel.

ÅOld data are written back to the off-chip memory, while the

pixels are being processing.

Off-chip

memory

Buffer 1

Buffer 2

192

Updating the Cached Area

ÅThe data of the next 192 pixels are read into a set of

buffers which consist of distributed RAMs, while the pixels

are being processing.

ÅWhen the number of active pixels becomes less than the

given threshold, the push-relabel unit is stopped.

ÅThe data of 3 of the 12 banks are updated in parallel.

ÅOld data are written back to the off-chip memory, while the

pixels are being processing.

Off-chip

memory

Buffer 1

Buffer 2

192

ÅPush-relabel unit has 10 stages.

ÅIn order to achieve higher performance, we need to

fulfill all the pipeline stages.

ÅHowever, while a pixel ό is being processed in this

unit, its neighbor pixel ὺ can not be put into the unit,

because ὧὺȟό may be changed by the processing

of ό.

Filling the Pipeline Stages

ÅPush-relabel unit has 10 stages.

ÅIn order to achieve higher performance, we need to

fulfill all the pipeline stages.

ÅHowever, while a pixel ό is being processed in this

unit, its neighbor pixel ὺ can not be put into the unit,

because ὧὺȟό may be changed by the processing

of ό.

ό

Filling the Pipeline Stages

ÅPush-relabel unit has 10 stages.

ÅIn order to achieve higher performance, we need to

fulfill all the pipeline stages.

ÅHowever, while a pixel ό is being processed in this

unit, its neighbor pixel ὺ can not be put into the unit,

because ὧὺȟό may be changed by the processing

of ό.

ό

ὺ

Filling the Pipeline Stages

Management of the Pixels

ÅSuppose that pixels ñaò to ñjò are being processed.

ÅFirst, new pixels are put into the shift register ñAò to ñZò.

ÅIf one of ñaò to ñjô is a neighbor of the pixel on ñCò, the data

on ñCò continues to stay on the shift register.

ÅIf several pixels can be processed, the older one is

chosen (piriority is ñZò>Ễ>ñBò>ñAò).

Detecting Gaps Using a Histogram

ÅὬό is heightened to ὠ ρ by gap relabeling heuristics

if vertex of height = Ὧ does NOT exist and Ὤό Ὧ.

ÅIn our implementation, Ὧ is looked up using a histogram

of the height of all pixels.

ÅIn our experiments,

ÅThe maximum value of each bin is less than 10000, so the data

width of counters is 15b.

ÅThe maximum Ὧ is less than 512.

We used 800 instead of ὠ.

Experimental Results

ÅWe have implemented the circuit on Xilinx XC6VLX130T-3.

ÅThe circuit uses 33.3 KLUTs (41%) and 97 36Kb block

RAMs (36%).

ÅOperational frequency is 201.1 MHz.

ÅWe have compared the performance with

ÅSoftware program (maxflow-v3.01) on Intel Core 2 Duo E8500

@3.16 GHz.

ÅGPU program on GeForce GTX280.

ÅThe graph is generated on the host computer.

Performance Comparison 1

Stone2 Person2 Flower

Segmentation results

Seeds (background)
Seeds (foreground)

Performance Comparison 1

ÅThe performance of the FPGA is almost comparable with

GPU (20 -- 30 fps).

ÅProposed system is about 3 to 5 times faster than CPU.

Benchmark Exec. Time (msec) Speedup

Image Size CPU GPU FPGA

Flower 600 x 450 161.1 37 30.7 5.2

Stone2 640 x 480 117.2 44 45.8 2.6

Person2 600 x 450 118.5 61 36.7 3.2

Performance Comparison 1

ÅThis figure shows the number of the pixels in the push-

relabel unit when processing Person2.

ÅAll stages are fully filled during about 50% of the

execution time.

ÅBut the idle time occupies about 20%.

The number of the pixels in the push-relabel unit

Performance Comparison 2

ÅFour different seeds are given to ñdogò.

ÅThe speedup depends on the seeds, but fast enough for

real-time processing.

Dog / seed1 Dog / seed2 Dog / seed3 Dog / seed4

Benchmark Exec. Time (msec) Speedup

Image Size CPU FPGA

Dog / seed1 482 x 321 182.1 31.7 5.7

Dog / seed2 482 x 321 300.0 30.3 9.9

Dog / seed3 482 x 321 185.7 26.4 7.0

Dog / seed4 482 x 321 363.4 33.1 11.0

Performance Comparison 3
ÅImages with small object are segmented.

ÅWorse speedup because of higher idle ratio of the

pipeline stages (processing of the background pixels

finishes faster than the pixels on the foreground).

ÅHowever, it is fast enough for real-time processing.

Wolf Sheep

Benchmark Exec. Time (msec) Speedup

Image Size CPU FPGA

Wolf 482 x 321 17.8 7.6 2.3

Sheep 450 x 600 33.6 16.9 2.0

Conclusions and Future Work

ÅWe have proposed an acceleration method of the max-

flow problem with FPGA.

ÅThe performance gain compared with a software library

on CPU is about 3 to 5.

ÅFor more speedup,

ÅWe need to fill the pipeline stage of the push-relabel unit more.

ÅSeveral push-relabel units can be implemented

(the size of the unit is small enough).

Thank you for your kind attention

